Additive manufacturing is driving the future of the automotive industry

Additive manufacturing aligns with the needs of the automotive industry, driving advances in vehicle design. Serial production is a reality today in additive manufacturing (or 3-D printing) as the technologies under this umbrella have advanced to a point where end-use parts can be made of both metal and plastic materials, ready to be put to use in real-world environments. The automotive industry has been a major adopter, with automotive OEMs among the first to install 3-D printers — some 30 years ago, in fact, Ford purchased the third 3-D printer ever made.

2014 Deloitte study pointed to two major areas of influence for 3-D printing in automotive applications: as a source of product innovation and as a driver of supply chain transformation. Over the past nearly half-decade, these predictions have shown to be spot-on as new vehicle models come out faster and sleeker, with digital supply chains reshaping logistics.

Some of the best-known benefits of additive manufacturing align precisely with what automotive OEMs are looking to deliver: faster development cycles, part consolidation, lightweighting, new and custom geometries.

Read more

Could 3D printed microscopes improve water testing?

Manual tests for safe drinking water can be slow and error-prone. A team of academics is trying to change that

WaterScope creates 3D printed microscopes to test water quality.Like many people, Alexander Patto was keen to move away from academia after his PhD. He wanted a job that would have a tangible impact on the world, so when an opportunity came up to investigate water testing in the developing world, he jumped at the chance. Together with a team of academics from the University of Cambridge, Patto, a biologist, worked on a simple way of testing bacterial contamination in drinking water.

“The current systems are very slow and complex,” says Patto. To get a robust result “there is a lot of manual sampling”, which can also lead to “a lot of human error”, he says. “What we’re trying to do is make it very, very simple, so that anybody can do a test, regardless of their skillset [and the] resources available, and still get a result that is scientifically robust.”

Read more

Radiological Society of North America post guidelines for 3D printed anatomic models

3DPI reporting from the heart of Formnext 2016. Image shows full color 3D printed anatomical hearts by Stratasys. Photo via: Michael PetchA special interest group of the Radiological Society of North America (RSNA) has posted a set of guidelines, suggesting standard approaches for 3D printing in healthcare.

Recognizing the need for evidence-based recommendations in the sector, these guidelines have been developed over a period of two years, in review of over 500 recent papers published on the topic.

As the abstracts states, “The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D printable model, and post-processing of 3D printed anatomic models for patient care.”

Read more

3D printing part of an ‘unparalleled period of invention’

3D printing technology applications come alive in applications ranging from developing packaging machinery to producing personalized medical devices to printing custom medications in a patient’s home.

The FDA acknowledges that “advances in material science, digital health, 3D printing, as well as other technologies continue to drive an unparalleled period of invention in medical devices.”

Plastic grippers made via 3D printing. (Photo from igus.)

The perspective comes from a Nov. 26, 2018 statement by FDA Commissioner Scott Gottlieb and Jeff Shuren, Director of the Center for Devices and Radiological Health, outlining transformative new steps to modernize FDA’s 510(k) program to advance the review of the safety and effectiveness of medical devices.

Read more

Catching up on 3D printing trends

GE locomotive valve gearThis collection of reports, books, and new items will get you up to speed on the 3D industry’s latest developments.

With so many developments in the additive manufacturing world to follow, I decided to use this article to compile some representative news items and reports. Taken together, they’ll provide you with greater insight into the most noteworthy 3D printing trends. The following features:

  • The latest edition of the 3D Hubs Online Manufacturing Trends report
  • Global Markets Insights’ report on 3D printing in the automotive industry
  • The importance of partnerships
  • New programs to stimulate 3D printing growth

Read more

Additive Manufacturing industrializes: A serious show shows a serious industry

Trade shows and conferences are time- and energy-intensive expeditions often requiring significant travel and expense. The best events prove their worth in bringing together the people who make an industry and the decision-makers who drive it — and in additive manufacturing, Germany is proving to be a destination of note each November.

Frankfurt drew 26,919 visitors and 632 exhibitors to the 2018 edition of formnext last week, perhaps the largest event on the calendar in additive manufacturing. With 49% international attendees and exhibitors representing 32 countries, formnext serves not only to provide some of the finest networking opportunities in this young industry but to act as a bellwether of some of the strongest trends in additive technologies. At this year’s edition — 25% larger than in 2017 but with 37,231 square meters of floor space already dwarfed by the 58,000 square meters announced for 2019 — formnext showcased an important trend in and of itself: additive manufacturing is big business.

Read more.

Machine Learning makes metal 3D printing more efficient

An aerial view of the Peter the Great St. Petersburg Polytechnic University. Image via mun: planetRussian researchers have used machine learning to make metal 3D printing more efficient.

3D printers require fine tuning of positioning and control algorithms using mathematical models to reach optimal performance. This is a lengthy and arduous process and it could take weeks to set printing parameters. Even then, the possibility of printing error is always present.

To overcome such problems scientists at the Laboratory of Lightweight Materials and Structures of Peter the Great St. Petersburg Polytechnic University (SPbPU) have developed a neural network for a metal 3D printer.

Read more

3D printing technology shakes up parts production for automakers, suppliers

Automakers and suppliers are on the cusp of revolutionary change through their growing use of 3D printing, a technology that can make custom parts on demand and has the potential to mass-produce parts.

Once the technology achieves critical mass, industry analysts say, 3D printing also could affect fixed operations at dealerships.

Many automakers now use 3D printing to make prototype parts for vehicle development, as well as tools and assembly aids for manufacturing operations. Several car companies are looking into making production parts with 3D printers in the next five years. Some automakers currently produce handfuls of small replacement parts, typically interior trim pieces.

Read more

 

Recycled fridges deliver sustainable 3D printing

Plastic recovered from discarded fridges is being re-purposed into a resilient material that can be used in the 3D printing of scale models and similar outputs. The development follows a partnership between two Dutch specialist, Coolrec, a subsidiary of Renewi, and filament manufacturer Refil.

Refil already makes a range of different coloured filaments from recycled car dashboards and PET bottles. Now it is taking the interior of fridges supplied by e-scrap specialist Coolrec to make High Impact PolyStyrene (HIPS) filament that has a neutral off white colour which is easy to paint or glue, making it a perfect material for the 3D printing of scale models. The filament comes in the two standard diameters of 2.85mm and 1.75mm and has successfully been tested on 3D printers.

Read more

Procter & Gamble is testing 3D printed Gillette razors

The question of 3D printing’s applicability to mass markets is being tested.  Mass customization may be the next step towards it.


Gillette customers will now be able to order personalized 3D printed razors in a pilot program from parent company Procter & Gamble.

Razor handles will be printed using stereolithography, a type of 3D printing technology from Boston-based Formlabs and people will be able to choose from 48 designs and seven colors, priced between $19 and $45, including one razor blade. A pack of four extra blades will cost $15 and orders will shop in two to three weeks from the company’s new Razor Maker website.

3D printing has mostly been used in manufacturing, according to David Lakatos, chief product officer at Formlabs. “Mass customization with 3D printing is finally becoming a reality for consumers to experience end-use printed products,” he said in an online statement.

Read more