3D printing method builds, repairs aircraft parts

174218_web2A team of researchers at RMIT University (Melbourne, Australia) is using laser metal deposition technology (a 3D printing technique) to build and repair defense aircraft parts in a two-year collaboration with RUAG Australia (Bayswater, Australia) and the Innovative Manufacturing Cooperative Research Centre (IMCRC; Carlton, Australia).

Laser metal deposition technology feeds metal powder into a laser beam, which when scanned across a surface adds new material in a precise, web-like formation. The metallurgical bond created has mechanical properties similar, or in some cases superior, to those of the original material. “It’s basically a very high-tech welding process where we make or rebuild metal parts layer by layer,” explains Professor Milan Brandt, who is leading the work. He says the concept is proven and prospects for its successful development are extremely positive.

Read more

Global environment concerns support R&D for plastic recycling in 3D printing

A recent series of major developments and events has created a new impetus for 3D printing plastic recycling. 3D printing of recycled plastics has multiple benefits, including lower costs and control over the amount of materials that can be used by 3D printers. Currently, 3D printing filament is produced by melting down virgin plastic pellets and extruding the melted plastic through a circular die which is then rolled up into spools. Printing with pellets or recycled materials is more cost effective and energy efficient than printing with new plastic filaments. In addition, direct printing of plastic pellets eliminates the need for further processing and therefore makes them less expensive.

Plastic has always been one of the leading 3D printer material categories.  Now there is an expanding global concern about the amount of plastic product waste and in particular its negative impact on oceans and waterways. Improved pellet 3D printing recycling technology can play an important part in helping solve this environmental problem. 3D printing product developers, engineers, designers and environmentalists working on pellet recycling projects have the opportunity to earn US R&D tax credits.

Read more

Scientists successfully printed 3D human heart tissue

Laser 3D printing process creates plane parts on the fly

Researchers from RMIT University in Melbourne have been using laser metal-deposition technology to build and repair defence aircraft in a process that’s similar to 3D printing.plane 3d printed parts

The technology feeds metal powder into a laser beam, which when scanned across a surface adds new material in a precise, web-like formation. The metallurgical bond created has mechanical properties similar, or in some cases superior, to those of the original material.

The team believes the technology could be “game-changing” for the aviation industry

“It’s basically a very high-tech welding process where we make or rebuild metal parts layer by layer,” said Professor Milan Brandt who is working on the project.

Read more

What are the 3D Printing technologies for prototyping and production?

engineer looking into 3D Printer machineHow to leverage additive manufacturing to build better products

Architects don’t build without modelling. They create “blueprints,” produce renderings, and build 3D models. But while these planning tools may resemble the actual building in shape, there is no resemblance in size or materials. As a result, except in the case of manufactured or modular buildings, the finished product will be the first time that real building materials have come together in exactly that configuration. That is one of the reason that architecture tends to be conservative in its rate of change. Without real-world testing, big change is risky.

Read more

Metal AM: Metal Additive Manufacturing hits critical mass with 875% growth

PrototypingRapid prototyping technology, building parts by creating a series of successive layers, began in the 1980s in Japan and immediately became a subject of interest in the U.S. The first patent, which coined the term stereo lithography (SLA), was granted in 1986 to Chuck Hull in the U.S. His 3D Systems company created the first prototype equipment in 1987 and launched the first commercial equipment in 1988.

Metal AM Beginnings: By the early 1990s, a half-dozen technologies based on layering principles were in the early stages of commercialization. Many subsequent approaches evolved from using liquids as the base material to using powders. Until the advent of powders, it was technically impossible to consider metal prototypes. The race to achieve metal prototypes now began. Twenty-five years later, the industry has achieved metal additive prototypes and is on the cusp of widespread Metal Additive Manufacturing (Metal AM).

Read more

The growing influence of 3D Printing on heat treatment

Additive manufacturing, which is more commonly recognized as three-dimensional (3D) printing, has rapidly advanced over the last several years to allow a wide variety of companies to quickly produce working prototypes according to the specific designs provided by the manufacturer. Aside from plastic being the primary 3D printing material, a number of other materials including metals, cements and even glass have been incorporated into 3D printed products. The relationship between 3D printing and heat treatment is equally beneficial, as the heat treatment of 3D printed projects has been shown to dramatically increase the strength and stiffness of certain 3D printed parts, whereas the 3D printing of heat treatment parts can be advantageous in the manufacturing process and subsequent properties of the 3D printed parts.  

Heat Treating 3D Printed Products

Since practically all 3D printed materials exhibit surfaces that are near net shaped, there is a zero tolerance for contamination on any surfaces, which thereby requires temperature control during this process to remain at 2° F. By combining heat treatment processes with 3D printing, manufacturers are able to directly thermocouple the pieces they are producing while also improving the specific characteristics of the product being produced.

Read more

HP to drive supply chain and manufacturing transformations using 3D tech

HP has announced new agreements with industry leaders Jabil and Forecast 3D to drive the future of distributed design, manufacturing and digital supply chains leveraging the power 3D technology. 

As the global economy enters what many call the 4th Industrial Revolution, new technologies such as 3D printing are enabling an array of new business opportunities such as distributed design and manufacturing, supply chain services, and increasingly localised production.

“From multinational design engineering and manufacturing, to localised  production, industry leaders such as Jabil and Forecast 3D are  demonstrating 3D printing’s expanding role in the digital transformation of the $12trn global manufacturing economy,” said Stephen Nigro, President of 3D Printing, HP Inc.

HP has announced new agreements with industry leaders Jabil and Forecast 3D to drive the future of distributed design

“HP Multi Jet Fusion customers and partners represent critical links in a new value chain that’s rewriting the rules of design, production, and delivery, ultimately ushering in a new era of digital manufacturing.”

Read more

The difference between: 3D printing and CNC machining

With today’s increase in complexity for engineered products and the need for faster production of these products, manufacturers are having to choose between technologies. This paper will discuss and compare two of the methods used to produce parts, while recognizing that each has its place, and can complement each other in the design and manufacturing workflow. Download this paper to learn about the differences between 3D Printing and CNC Machining and when to choose each technique.

The Difference Between: 3D Printing and CNC Machining

Read more

 

The Difference Between: 3D Printing and CNC Machining

A useful reminder


With today’s increase in complexity for engineered products and the need for faster production of these products, manufacturers are having to choose between technologies. This paper will discuss and compare two of the methods used to produce parts, while recognizing that each has its place, and can complement each other in the design and manufacturing workflow. Download this paper to learn about the differences between 3D Printing and CNC Machining and when to choose each technique.

Download here