Tag Archives: Design

Planning to buy a 3D printer? These are 7 details you should pay attention to

From 3dprint.com:

I remember when I was planning my first 3D printer purchase. These were endless hours of browsing phrases like “3D printer choice criteria” or “the most important 3D printer details/parts”.Almost every article’s main point was “it depends on what do you want your 3D printer to be used for”.And this is obviously true. Of course, I know that this is not what you are looking for, so in this article I would like to introduce you to a list of the seven most-important features of 3D printers which you need to look at before buying a new one of your own.

  1. Build volume

This is usually the first parameter given by 3D printer manufacturers. It determines the maximum size your printed element can be. It involves three numbers. The first two are the length and width of your printing, and the third is height. So, at the beginning you should think about the biggest thing that you might want to 3D print with your device, and reject all the 3D printers whose build volume is too small. You should also pay attention to the units used. Some manufacturers use inches, others use millimetres or inches, so be careful.

Read more

Tagged , ,

Engineering Fit: Optimizing design for functional 3D printed assemblies

Adapting the approach to design to take into account the realities of 3D printing is one of the wider issues that needs seeing to when adopting that technology in the supply chain.  FormLabs have prepared an insightful paper on this topic

Tolerance and fit are essential concepts that engineers use to optimize the functionality of mechanical assemblies and the cost of production. For 3D printed assemblies specifically, designing for proper tolerance and fit lowers post-processing time and ease of assembly, and reduces the material cost of iteration.

Use this white paper as a resource when designing functional 3D printed assemblies, or as a starting point when designing the fit between parts printed in Formlabs Tough or Durable resins. Download the white paper now if you want more information on:

  • The value of tolerances in 3D printing
  • The categories and types of engineering fit
  • Specific recommended design tolerances for Formlabs Tough v4 and Durable v3 resins

The coefficient of friction for Tough and Durable are also measured, which can be helpful for designing sliding or kinematic solutions.

What you will learn

Design functional 3D printed assemblies that work as intended, with the least amount of post-processing or trial-and-error. Download the white paper now to learn:

  • How to choose the appropriate fit (clearance, transition, or interference) for different types of functional 3D printed assemblies
  • When to use Tough or Durable resins for different fits and assembly applications
  • Recommendations for lubricants, bonded components, and machining

This white paper also included downloadable test models that allow you to repeat our tests and determine design tolerances for other 3D printed materials.

Read more


Dassault Systèmes develops new online marketplace for manufacturers using 3D printing

Dassault Systèmes has become a major player in the 3D printing industry over the last decade, mostly due to its advanced 3D design software as well as the useful integration of design, simulation and production tools provided by its 3DExperience platform. A productive collaboration with Airbus has also seen the French company at the forefront of 3D printing’s expansion into the aerospace sector. It could now be on the cusp of bringing about another minor revolution in the worlds of 3D printing technology and manufacturing, as it has announced a new business strategy that will make all its products available for free.

License fees for Dassault Systèmes’ impressive range of 3D design and printing solutions can be prohibitively expensive for many companies, with its multi-platform software suite CATIA costing around EUR 15,000. This is all set to change, as the company transitions towards a new economic model. Users will be able to access CATIA, Solidworks, Simulia and all other Dassault Systèmes products entirely free of charge.

Instead of charging to use its software, the company will be rolling out a new online intermediation platform, or a ‘marketplace’, which will generate revenue according to a commission-based system. Once a project is completed, and the design is sent to a 3D printing service or company for the final stage of production, Dassault Systèmes will charge a fee to the 3D printing provider based on the value of the product.

Read more

Tagged ,

Futuralve project uses metal 3D printing to improve high-speed aerospace turbines

Renishaw is a busy company, lending its metrology and metal 3D printing expertise to a broad variety of applications from boats to eye surgery. One of its primary industries, however, has always been aerospace. That’s a particular area of focus right now for Renishaw Ibérica, the company’s Spanish subsidiary. Currently, Renishaw Ibérica is part of a large project known as the Futuralve project, which is geared towards the development of new, advanced materials and manufacturing technologies for aerospace turbines.

The Futuralve project is being led by ITP, a Spain-based, international manufacturer of aerospace engines and turbines. Participants include a consortium of other Spanish companies, as well as universities and technology centers. It’s a four-year project, funded by the Spanish government through the Center for the Development of Industrial Technology (CDTI), and its goal is to enhance the production of high-speed turbines through advanced manufacturing and materials.

Read more


Materialise says co-creation is key to success in 3D printing industry

1.jpgThere aren’t many companies that can pull off a multi-track, two-day conference using only its partner network and top it off with a Jimmy Fallon show-style event complete with its own ‘3D Printed Hearts Band’ made entirely of its staff. But then there aren’t many companies like Materialise, which recently ticked all of those boxes, and then some, when it hosted its biannual World Summit in Brussels.

Materialise founder and CEO, Fried Vancraen, welcomed delegates to SQUARE on April 20th with a brief history of how the Belgian 3D printing company has evolved over the last 27 years.

“We believe co-creation is at the base of many more successes,” Fried explained and that belief set the course for the presentations that followed with a host of Materialise partners discussing everything from aerospace to consumer goods.

Read more

Tagged ,

3D printing design theft could be sabotaged by secret flaws in CAD files

Engineer works with 3D printer in a darkened roomOnce 3D printing files have been stolen, nothing can stop the illicit production of objects indistinguishable from those made by the manufacturer. To prevent this, American researchers suggest embedding flaws into designs such that only under specific conditions are they neutralised.

In the past year, the 3D printing – or additive manufacturing – industry has grown nearly 26 per cent and is now worth more than $5 billion. 3D printing is used to produce prostheses, buildings, puddings and countless other objects of practically any shape imaginable.

Tagged , ,

Canada makes 3D printed satellite part set for launch into space

The interface bracket that will be launched later this year. Photo via Canada Makes. Canada Makes has announced its role in the development of a 3D printed satellite bracket that will be sent to space later this year.

To build the part, the Canadian additive manufacturing agency partnered with French metal manufacturers FusiA and Canadian communications company MacDonald, Dettwiler and Associates (MDA). The project was funded by Canada Makes’ Metal Additive Demonstration program which is supported by Canadian research program, NRC-IRAP.

By using 3D printing to create the part, the group will reduce weight, optimize size and shape, and lower costs. According to Canada Makes General Manager, Frank Defalco, their “primary goal is to reinforce Canada’s additive manufacturing supply chain and this project is a big step in that direction.”

Read more

Tagged , , ,

Stratasys and Dassault Systèmes to optimize design of 3D printed parts

One of 3D printing’s big advantages is that it allows designs to be optimized, free of the restrictions of traditional, reductive manufacture. 

Stratasys and Dassault Systèmes have partnered to develop next-generation design tools that improve the efficiency, functionality, strength and weight of end-use parts produced using Stratasys’s fused deposition modeling (FDM) 3D printing process.

Stratasys will work with SIMULIA—the Dassault Systèmes’ brand focused on simulation software applications—to offer simulation capabilities that facilitate optimization of final part designs for a range of applications, including those in the aerospace and automotive industries.

Read more

Tagged ,

Solving aircraft overload with 3D printing

The aviation trade is facing a dilemma as passenger demand for flights goes through the roof while customers increasingly demand more for less from airlines.

In 2016 alone there are expected to be more than 3.7 billion people boarding flights around the world. As a result, Boeing has predicted that accommodating the huge increase in passengers and cargo will require 38,050 new airplanes in the next 20 years, at the cost of $5.6 trillion.


Read more


How 3D printing can be more than prototyping

How 3D printing fits into the digital thread, and the relationship between its uses for prototyping and for manufacturing, was the subject of a talk — More Than Prototyping: Digital Manufacturing’s Role in Industry 4.0 — by Proto Labs’ CTO Rich Baker at last week’s Design & Manufacturing Minneapolis .

In his talk, Baker discussed several topics, including the limitations of materials and 3D printing processes on the design and production cycle, use cases for 3D printing and additive manufacturing (AM), the opportunities and challenges of using these technologies for end-to-end production, and how these and other new technologies are driving shifts in system design methodology.

Read more